Context-dependent effects of nutrient loading on the coral-algal mutualism.
نویسندگان
چکیده
Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.
منابع مشابه
Herbivore vs. nutrient control of marine primary producers: context-dependent effects.
Pervasive overharvesting of consumers and anthropogenic nutrient loading are changing the strengths of top-down and bottom-up forces in ecosystems worldwide. Thus, identifying the relative and synergistic roles of these forces and how they differ across habitats, ecosystems, or primary-producer types is increasingly important for understanding how communities are structured. We used factorial m...
متن کاملNutrient loading alters the performance of key nutrient exchange mutualisms.
Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interactin...
متن کاملTranscriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners
In the South China Sea, coastal eutrophication in the Beibu Gulf has seriously threatened reef habitats by subjecting corals to chronic physiological stress. To determine how coral holobionts may tolerate such conditions, we examined the transcriptomes of healthy colonies of the galaxy coral Galaxea fascicularis and its endosymbiont Symbiodinium from two reef sites experiencing pristine or eutr...
متن کاملSeasonal regulation of herbivory and nutrient effects on macroalgal recruitment and succession in a Florida coral reef
Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succe...
متن کاملMutualism and Coral Persistence: the Role of Herbivore Resistance to Algal Chemical Defense
Because seaweeds uncontrolled by herbivores can overgrow and kill corals, competition can exclude corals from temperate latitudes where herbivores generally fail to control seaweed biomass. In this study, we show that the coral Oculina arbuscula persists on reefs in temperate North Carolina where seaweeds are common by harboring the omnivorous crab Mithrax forceps, which removes seaweeds and in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 95 7 شماره
صفحات -
تاریخ انتشار 2014